
Biosignal-based
Spoken Communication

Tanja Schultz
Cognitive Systems Lab, Universität Bremen

November 21st 2018

T. Schultz, http://csl.uni-bremen.de      



T. Schultz, http://csl.uni-bremen.de                                  2

Nonverbal
Articulation

Brain
activity

Eye 
gaze Body 

temperature

Body
noise

Gesture

Kinetic
Biosignals

Electrical
Biosignals

Acoustic
Biosignals

Chemical
Biosignals

Thermal
Biosignals

Ac
ce

le
ro

m
et

er

Th
er

m
om

et
er

Respiration

Su
rfa

ce
 

El
ec

tro
de

s

Th
er

m
al

 
ca

m
er

a

Optical
Biosignals

G
yr

os
co

pe

M
ag

ne
to

m
et

er

M
as

s 
sp

ec
tro

m
et

er

C
he

m
o-

el
ec

tri
ca

l 
Se

ns
or

s

M
ik

ro
ph

on
e

So
no

gr
ap

h

Vi
de

o-
ca

m
er

a

N
ea

r I
nf

ra
re

d 
Sp

ec
tro

sc
op

y

Dermal
activity

Muscle
activity

Motion

Facial 
expression

Heart
activity Speech

Bi
os

ig
na

ls
|S

en
so

rs
 |

H
um

an
 S

ig
na

ls
, M

od
al

iti
es

Definition Biosignals
Autonomous signals measured in physical quantities

T. Schultz, C. Amma, D. Heger, F. Putze, M. Wand Biosignale-basierte Mensch-
Maschine-Schnittstellen, In at - Automatisierungstechnik, 2013, volume 61, 2013.
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Definition Biosignals
Autonomous signals measured in physical quantities

T. Schultz, C. Amma, D. Heger, F. Putze, M. Wand Biosignale-basierte Mensch-
Maschine-Schnittstellen, In at - Automatisierungstechnik, 2013, volume 61, 2013.
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Biosignal-based Spoken Communication

T. Schultz, M. Wand, T. Hueber, D. Krusienski, C. Herff, J. Brumberg. Biosignal-based Spoken Communication: 
A Survey. In IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 25, pp 2257-2271, 2017.
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Speech-related Activities and Biosignals

SPEECH production is a complex process 
resulting from human activities

It is …
• initiated in the brain, … 
• leading to muscle activities that produce ...
• respiratory, laryngeal, and articulatory 

gestures which create acoustic signals

Speech-related activities can be measured at 
each level of speech processing, including 
• the central and peripheral nervous system,
• muscular action potentials, 
• speech kinematics. 

Their measurement, 
• recorded with various sensor technologies, 

results in “speech-related biosignals”
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Panopoly of Sensor Technologies

US+video (Hueber), EMA (Schönle), OPG (Birkholz), 
PMA (Gilbert/Gonzalez, Erro/Hernaez),  

NAM (Nakajima), intraoral (Bos), Radar, …

EMG (Jorgensen, Schultz), Lipreading (Petajan, others)

ECoG (Schalk, Herff), microelectrodes (Brumberg), EEG 
(Wester, D‘Zmura), fNIRS (Herff/Schultz)
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Why Biosignals for Spoken Comm.  

• On the shoulders of giants: 
– Biosignals have been studied for decades to better 

understand the mechanisms of human speech processing 

• Novel Applications, New insights
– Traditional speech processing focuses mostly on acoustic
– Alternative biosignals could overcome current limitations of 

speech processing for humans and machines, e.g.
• Reduce delay: Capture speech-related activities prior to 

the airborne acoustic signal
• Reduce disturbance: Capture speech-related activities even if no 

acoustic output is suitable/wanted
• Extend applicability to otherwise mute people (e.g. laryngectomy)
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Spectrum of Speaking Modes

• Speaking modes – acoustic output available: 
– Modal (normal) speech: vocal folds vibrate for voice sounds
– Whispered speech: turbulent flow through constant aperture 

between vocal folds
– Different levels of effort: normal – shouted – murmured 

• Speaking modes – no acoustic output available: 
– Silent speech: articulators are moving but airstream is 

suppressed (mouthing speech)
– Imagined speech: like silent speech but no articulation 

movement (sometimes referred to as “attempted” speech)
– Inner speech: internalized process in which one thinks in pure 

meaning (no phonological properties, no turn-taking, etc.) 
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Biosignal-based Spoken Communication
Like acoustics, speech-related Biosignals can be automatically processed: 
• Feature extraction followed by speech recognition, speech synthesis, … 

Opens up novel use cases, coined Biosignal-based Spoken Communication: 
• Robust Spoken Communication 

– Enhance performance under adverse noise conditions
– Fuse complementary biosignals

• Mute-Spoken Communication
– Avoid disturbance in quiet environments
– Secure against eavesdropping in public places

• Restore Spoken Communication
– Voice prostheses for individuals unable to speak

• Speech Training and Therapy 
– Deliver articulatory biofeedback of voice production 
– Increase articulatory awareness for therapy & training
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• Time domain features 
• Artefact reduction
• Contextual features
• Compression

“Hello”

Text
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Maier-Hein et al, ASRU 2005, Jou/Schultz 2006-2009, Wand/Schultz 2007-2014, Janke/Schultz 2010-2016, Diener/Schultz 2015-
Wand, Janke, Schultz: Tackling Speaking Mode Varieties in EMG-based ASR, IEEE Biomedical Engineering, Vol 61, 2014.

Modality: Speech
Sensor: EMG-sensor
Electrical Biosignal
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Silent Speech Interfaces: EMG
Surface ElectroMyoGraphy (EMG) 

Surface = No needles
Electro = electrical activity
Myo = muscle
Graphy = recording

Speech results from the activity of articulatory muscles
Electrodes capture the electrical potentials 
of the muscle activity in the face
EMG records Motion, not the acoustic signal

EMG-Signal  „zero zero zero“ 
+
–

ref
s1

s2

s2 – s1

Denby, Schultz, Honda, Hueber, Gilbert, Brumberg (2010): Silent Speech Interfaces. Speech Communication, Vol 52 (4).
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Silent Speech Interfaces: Benefits
EMG records motion, not acoustics  Þ Silent Speech can be processed
In Silent speech the speakers are instructed to move their articulators as if they were producing 

normal modal speech but to suppress the pulmonary airstream, so that no sound is heard

No Disturbance:  Speak silently in quiet environments
Keep your Privacy:  Transmit confidential information
Noise Robustness: No corruption in noisy environment 
Speech Augmentation: Support speech impaired people
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• Bundles of Phonetic Features (BDPF) (e.g. voiced fricative, …)
• Context dependent modeling (using decision trees)
– Multi-Stream decoding system: nine most frequent PFs
Þ ~ 30% relative WER gain

Challenge 1 – Low-ressource ASR

T. Schultz, M. Wand: Modeling Coarticulation in EMG-based Continuous ASR. Speech Communication, 52 (4), 2010
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Challenge 2 – Session/Spk Dependencies

Lessons Learned: What works best
Train Session-Independent (SI) Systems (the more sessions the better)
Rapidly adapt SI System to session, MLLR, unsupervised okay
Training across sessions works well, across speakers not (yet?)



T. Schultz, http://csl.uni-bremen.de                                  17

M. Wand, T. Schultz, J. Schmidhuber: Domain-Adversarial Training for Session Independent EMG-based Speech 
Recognition, Interspeech 2018

Deep EMG-to-Text (ASR)

Common part

BDPF state classifier
(only on source sessions)

Session classifier
- inverted gradient (confuse sessions)
- configurable contribution

Apply Adversarial Training to session-independent EMG-based ASR, i.e. make data of
different sessions more confusable, to improve the target classification accuracy
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• EMG-PIT corpus: 78 subjects, 18-35 yrs, normal vocal qualities
• About 12 hrs read speech, BN style, large vocabulary
• Audible (normally spoken) and Silent (mouthed) 

• EMG-UKA corpus: Many sessions of eight subjects, same scenario
– Audible, Silent & Whispered speaking mode
– Study Impact of speaking modes

• Free download of trial corpus (benchmarks in paper)
• Full corpus available via ELRA (research and commercial license)

EMG Multi-speaker, Multi-Session Data

Wand/Schultz: “The 
EMG-UKA Corpus for 

Electromyographic
Speech Processing”, 

Interspeech 2014
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Challenge 3 – Lack of Auditory Feedback
EMG signals of Silent speech are different from those of audible speech
Effect weaker for experienced speakers; group “good/bad” speakers
Power Spectral Densities (PSD) of audible, whispered and silent EMG
Significantly smaller variations for “good” speakers

Spectral Mapping Algorithm to compensate for differences: ~12% rel D
Ultimate Cure: Provide instant auditory feedback ® Direct Synthesis 

‘Bad’ silent speaker 
(WER >40%)

‘Good’ silent speaker 
(WER < 40%)
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Two Methods: ASR versus Direct Synthesis

Signal Processing
A/D, Artifacts, Feature Extraction …

Automatic Speech Recognition (ASR)

TEXT: 

I      /i/
you /j/ /u/
we  /v/ /e/

I am
you are
we are

SPEECH: 

Feature Transform + Vocoding

EMG-2-MFCC

EMG-to-Text EMG-to-Speech
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Two Methods: ASR versus Direct Synthesis

Automatic Speech Recognition (ASR)

I      /i/
you /j/ /u/
we  /v/ /e/

I am
you are
we are

ASR – PROS 
High output quality
Text for application backend

ASR – CONS
Limited vocabulary
Recognition errors
No emotion, emphasis, …

Direct Synthesis – PROS 
No vocabulary restrictions 
Speaker identity, emotion, …
Minimal delay: user-in-the-loop

Direct Synthesis  – CONS
Output quality (quality vs time)
No text for application backend

Feature Transform + Vocoding

EMG-2-MFCC
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Two Methods: Applications

Automatic Speech Recognition (ASR)

I      /i/
you /j/ /u/
we  /v/ /e/

I am
you are
we are

ASR Application Direct
Synthesis

YES Robust Spoken Communication (indirect) YES
YES Mute Spoken Communication (indirect) YES
YES Silent Command & Control (no text)
NO User-in-the-loop, Coadaptation YES
NO Biofeedback for Therapy and Training YES
NO Voice Prostheses (face-to-face) YES

Feature Transform + Vocoding

EMG-2-MFCC
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EMG-to-Speech (Feature Transform + Vocoding)
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Feature Transformation – 3 Approaches

Gaussian Mapping Unit Selection Neural Networks
Source feature vectors

Target feature vectors

Train GMM to describe 
the joint probability density
of source and target 
feature vectors:
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Approach Comparison (Subjective Eval)

Mean Opinion Scores from Listening test: Resynthesized reference (Resynth), 10 subjects 
rated the speech quality from 0 (bad) to 100 (excellent); error bars = standard deviation

M. Janke and L. Diener, “EMG-to-speech: Direct generation of speech from facial electromyographic signals,” IEEE/ACM Trans. Audio, 
Speech, Language Process., Special Issue Biosignal-based Spoken Communication, December 2017. 
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Low-Latency EMG-to-Speech

Real-time speech output to enable
– Natural Conversation (retain paralinguistic information)
– Auditory feedback with acceptable delay

Diener/Schultz: Investigating Objective Intelligibility in Real-Time EMG-to-Speech Conversion. Interspeech 2018
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Pilot Experiments

• Challenges: few data (session dependence, time constraints)
• First study on 1 speaker, 2 sessions

– Array:  More sensors, easy-to-use, set up time, …
– 300 utts = 20min speech / session
– 135/200 utts training, rest dev and eval, 
– Spectral frame based measure of intelligibility (STOI)

• Features: usual time-domain TDN
– Stacked into the past only
– 32ms window size, 5ms shift works best

• Speech output representation: Mel spectrograms
– Waveforms by phase reconstruction (Griffin-Lim)

• EMG-to-Mel Conversion: Feedforward NN
– Same shape but different sizes as in Janke, 2015
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Results: EMG-Audio Offset (training)

→ 50ms delay, i.e.:
(EMG preceeds Audio) 
confirms Jou, 2006

→ Stacking: more
is better but limited 
by data due to
dimensionality
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→ Fair
ressemblance but   
still rather noisy
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Acoustic Speech Recognition 
– Audible Speech produced by the (excited)

human articulatory apparatus
ÞTraditional Speech-to-Text

Silent Speech Recognition
– Silent Speech captured by muscle activities

which move the articulatory apparatus
– Speech involves innervation of muscles
Þ EMG-to-Text, EMG-to-Speech

Imagined Speech Recognition
– Thinking about producing speech
Þ Brain-to-Text, Brain-to-Speech

Up to the Brain: Imagined Speech
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Measuring Brain Activity

103
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ElectroCorticoGraphy (ECoG)

• ECoG: captures electrical activity of the brain (like EEG) with high temporal 
resolution (like EEG) but also high spatial resolution (unlike EEG)
– records directly on the brain surface

• 7 subjects with intractable epilepsy, 
Albany Medical Center (NY, US)

• Electrode locations only determined by 
clinical needs

• 1 – 4 sessions with very little data per session 
(about 5 minutes)
– Political speeches, Fan-fiction, Children rhymes
– Between 20 and 48 phrases per session

• Electrode positions were co-registered in 
common Talairach space 
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Experiments with Audible Speech

• Participants read aloud scrolling text (Ticker task)
• ECoG & acoustics recorded simultaneously
• Assign phones labels from the acoustic stream (forced alignment, ASR)
• Impose labels on neural data; model phones solely from neural data

C Herff,   D Heger,   A de Pesters,   D Telaar, P Brunner,   G Schalk and Tanja Schultz Brain-to-text: decoding spoken phrases from phone
representations in the brain. Front. Neurosci., 12 June 2015 | http://dx.doi.org/10.3389/fnins.2015.00217
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Feature Extraction
• 58 – 120 electrodes
• Linear detrending, CAR filtering (re-reference channels to common average)
• Elliptic IIR notch filter (118-122, order 13) attenuates first harmonic of 

60 Hz line noise
• For each channel c extract logarithmic power of Broadband gamma 

(70-170 Hz) in 50 ms intervals i, 25 ms overlap: 𝐸𝐸𝑖𝑖,𝑐𝑐 = log(1
𝑛𝑛
∑𝑡𝑡=1𝑛𝑛 𝑥𝑥𝑖𝑖,𝑐𝑐(𝑡𝑡)2)

• Assign each interval/frame the corresponding label from the acoustic stream

• Context: stack with ± 4 neighboring frames (up to 200 ms prior and after)
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Feature Selection
• Large Feature Space: Over 900 dimensions
• Use discriminability as criterion for feature selection
• Mean Kullback-Leibler divergence (KLDiv) for each feature

• Calculate KLDiv between each 
pair of phones à Mean is 
mean Discriminability for 
the current phone at location 
and time offset

• Plotting the mean KLDiv
allows interpretation of 
relevant areas and time 
offsets
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Brain Activity while producing speech
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Brain Activity while producing speech

Starting 200 ms before the actual 
phone production, we see high KL-div 
values in diverse areas including 
Broca's area, which is generally 
associated with speech planning 
(Sahin et al., 2009). 
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Brain Activity while producing speech

150 ms prior to the phone production, 
Broca's area still has high KL-div 
scores, but now sensorimotor areas 
and regions in the superior temporal 
gyrus associated with auditory and 
language function show increasing 
discriminability. 
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Brain Activity while producing speech

Subsequently, activations in Broca's area vanish 
and motor area discriminability increases until 
peaking at the interval between 0 and 50 ms (which 
corresponds to the average length of phones). 
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Brain Activity while producing speech

Discriminability increases in auditory regions until 
approximately 150 ms after phone production.
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Experimental Results: Randomization Testing

• Shift ECoG data by half of the session, keep labels
• Typical ECoG data, but does not match labels anymore
• Train a full system “Random” for comparison with Brain-to-Text
• All evaluation done in a leave-one-phrase-out cross-validation
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Brain-to-Text: Experimental Results
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Two Methods: ASR versus Direct Synthesis

Signal Processing
A/D, Artifacts, Feature Extraction …

Automatic Speech Recognition (ASR)

TEXT: 

I      /i/
you /j/ /u/
we  /v/ /e/

I am
you are
we are

SPEECH: 

Feature Transform + Vocoding

ECoG-2-MFCC

Brain-to-Text Brain-to-Speech
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Towards Brain-to-Speech
• Direct synthesis of speech from neural activity 

– Current BCI do not convey acoustic cues like stress, intonation, …
– Instant feedback allows for human-in-the-loop concept: Co-adaptation

• RESPONSE Project (with D. Krusienski ODU and J. Shih UCSD)
– Revealing SPONtaneous Speech processes in Electrocorticography
– CR Computational Neuroscience, NSF and BMBF (2017-2020)

• UCSD Data (Shih et al.)
– 6 Epilepsy patients implanted with ECoG grids, 

strips or depth electrodes for surgical mapping
– Spontaneous and 50 Harvard Sentences in 

3 modes: audible, silent, imagined 
• Northwestern Data (Slutzky et al.)

– 6 patients undergoing glioma removal
– 8x8 electrode high-density ECoG grids 

placed on IFG, M1v and PMv
– Audible repetition of >280 words
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Two Synthesis Approaches

(1) High-quality Speech Output with Dual Neural Network Approach:  
– Densely Connected Convolutional NN maps ECoG to spectral features
– Wavenet transforms spectral features to speech waveform

(2)  Fast and straight-forward codebook-based Unit Selection Approach:
Herff, Johnson, Diener, Shih, Krusienski, Schultz: Towards direct speech synthesis from ECoG: A Pilot Study, EMBC 2016
Herff, Diener, Mugler, Slutzky, Krusienski, Schultz: Brain-To-Speech: Direct Synthesis of Speech from Intracranial Brain
Activity Associated with Speech Production, BCI 2018
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3rd Brain-to-Speech
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Biosignal-based Spoken Communication

Special Issue T-ASL, Dec 2017, Vol 25, Number 12

Editors: Tanja Schultz, Thomas Hueber, 
Dean J Krusienski, Jonathan Brumberg

In total 13 papers covering the field, including survey
“Biosignal-based Spoken Communication: A Survey”
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